Fiber Bundles and Gauge Theory
Eiji Kitajima (November 2025)

flam interested in the interconnection of Pysics and \
Mathematics. | understand that Bundles of Mathematics

and Guage Theory of Pysics are interconnected. At first,

will you define and explain about Bundles of Mathematics

in the way of step-by-step proces, reffering to Manifold.
kWiII you give me a sumary talbe at last. Eiji )

Excellent question, Eiji — the concept of bundles in mathematics forms one of the most
profound bridges to gauge theory in physics. Let's build the understanding step by step,

starting from manifolds and moving toward the general idea of fiber bundles.

~ Step 1: Manifolds — The Base Space
A manifold M is a space that /ocally looks like R (Euclidean space) but may have a

different global shape (e.g., a sphere, torus, or spacetime).

Definition (Smooth manifold):
A smooth N-dimensional manifold M is a topological space such that for every point

P € M, there exists a neighborhood U and a homeomorphism (called a char)
¢:U—R"

and the transition functions between overlapping charts are smooth (C™).

In physics, manifolds serve as the stage on which physical fields are defined:

e In classical mechanics, M = R’ (space).

e In relativity, M = R* with Lorentzian metric (spacetime).

Step 2: Fibers — Local Internal Structures
At every point X & M, we may attach another mathematical object (a fiber) that

represents internal degrees of freedom.

Example:

e In differential geometry, the tangent space TyM at each point is a vector space.
e In physics, fibers can represent internal “symmetry spaces,” such as:

e Spin space in quantum mechanics



e Gauge group space G in gauge theory (e.g. SU(2), U(1), SU(3))
So, a fiber F is the type of space we attach to every point X & M.

Step 3: Fiber Bundles — Global Assembly of Local Data
A fiber bundle is a smooth structure combining the manifold M and the fibers F.

Definition:

A fiber bundle consists of:
(Es: M1, F)

where:
e [: total space (the entire collection of fibers)
e M: base space (the manifold)
e 717: E — M: projection map (takes a point in the total space to its base point)
e F:fiber (typical fiber attached to each point)
.Foreachx € M:
Tl =F
Locally (in small regions U C M):
ml(WU)y=UxF

but globally the structure may be twisted, like a Mdbius strip.

Step 4: Sections — Fields Defined on Bundles

A section of a bundle is a smooth map:
s:M—-E

such that 17(S(X)) = X.

In physics:

e A field is a section of an appropriate bundle:
e Scalar field — trivial bundle M x R
e Vector field — tangent bundle TM

e Spinor field — spinor bundle



e Gauge field — connection on a principal bundle

=1 Step 5: Connections — Describing Change Along the Manifold
To compare fibers at different points X, X, & M, we define a connection (a rule for

parallel transport).
Mathematically:

e A connection defines a horizontal subspace He C ToE.

e It gives a covariant derivative D, = 0, + Ay, where A, (the connection form) tells

us how to move within the bundle.
Physically:
° Au is the gauge potential (e.g. electromagnetic 4-potential).

e lts curvature Fyy = 0yAy — OvA, + [Ay, Av] represents the field strength.

W Step 6: Principal Bundles — The Core of Gauge Theory
A principal bundle (P, M, 11, G) has:

e Structure group G (e.g., U(1), SU(2), SU(3))

e Right action of Gon P

e Fibers that are isomorphic to G

Connections on principal bundles are gauge fields, and their curvature gives the field

tensor.

Physics Geometry

Gauge group G Structure group of principal bundle
Gauge potential A, Connection 1-form

Field strength F#V Curvature of the connection

Gauge transformation Change of local trivialization

« Step 7: Examples



Example

Tangent bundle

M@obius strip

Electromagnetic U(1)
gauge field

SU(2) weak force

Base M

Manifold M

Circle S!

Spacetime M

Fiber F Total Space £

R7 ™

Interval / Twisted strip

U(1) group Principal U(1)-
bundle

SU@2) Principal SU(2)-

. Summary Table: Mathematical Structure of Bundles

Step

1

Concept

Manifold M

Fiber F

Fiber Bundle

(E,M, m, F)

SectionS: M — E

Connection

Curvature

Principal Bundle

bundle

Mathematical Definition

Locally Euclidean

topological space

Space attached to each
xXem

Smooth projection TT :

E—- M

Smooth map with 7T o S =
idpy

Differential rule for parallel

transport
F=dA+ANA

Structure group G acts on
fibers

Type

Vector bundle

Non-trivial
bundle

Principal bundle

Principal bundle

Physical Interpretation

Spacetime (4D)
Internal space (e.g.,
charge, spin)

Field configuration

space

Field over spacetime

Gauge potential Ay

Field strength tensor

Gauge symmetry space

Would you like me to extend this explanation by showing how the gauge theory

Lagrangian (like Yang-Mills) is formulated on a principal bundle—that is, how curvature

va appears naturally from the geometry of the bundle?



Next, will you define and explain about Guage theory,
refferring to the inner symmetry of elementary particles of
the standard model, by useing the way of step-by step
proceses. At last, give me the summary table.

BEERE: 10s >

Great—let's build gauge theory from the ground up and tie every step to the inner

(internal) symmetries of the Standard Model (SM).

1) What “gauge” means (local internal symmetry)

Idea. A field theory is gauge if a global internal symmetry (same transformation

everywhere) is promoted to a local one (transformation may vary with spacetime point X).
e Fields carry internal charges and take values in representations of a Lie group G.

e Requiring invariance under local G-transformations forces the introduction of new

fields—the gauge fields—that compensate the spacetime dependence.
Mathematically (bundle view):
e Spacetime M is the base manifold.
e Thereis a principal G-bundle P — M.
e A connection (1-form) Ay,(X) on P is the gauge potential.

e lts curvature Fyy is the field strength.

2) The Standard Model symmetry and its “charges”

The SM internal (gauge) symmetry is
Gsm = SU(3)c x SU2) x U(1)y.

e SU(3)¢: color (strong force), gauge bosons gf, (8 gluons), coupling &Zs.

e SU(2);: weak isospin (acts only on left-chiral doublets), gauge bosons W;; (3),
coupling &.

e U(1)y: hypercharge Y, gauge boson By, coupling Z,

Electric charge:



=T+ ¥,

where T3 is the third weak-isospin generator.

3) Matter content (one generation) and representations

Left-chiral fermions are doublets under SU(2); right-chiral are singlets. Hypercharges Y

are chosen so that all gauge anomalies cancel.

Rep under SU(3), x
Field SUQR)x Uy Components Q check
Quark doublet Q; (3,2,+1/6) (UL, dp) u:+3,d:—3
Up quark UR (3,1,+2/3) — +2
Down quark dg (3,1,-1/3) - =4
Lepton doublet L; (1.2,—12) (v, er) v:0e:-1
Electron €p 1,1,-1) — -1

(Minimal SM has no Vg;

extended models add

(1,1,0))

There are three generations with identical gauge reps but different masses and mixings.

4) Gauge fields, covariant derivative, and field strengths

To make local symmetry work, ordinary derivatives must be replaced by the covariant

derivative
; T/ P
Dy=0,-igsGT? - ing’Jg ~ g B, Y,

acting on a field in the corresponding representation (with color generators T2 and weak

Pauli matrices Ti).

Field strengths (curvatures):



Gl =0uGy—0uGy + g GG,
Wi, = o, W, — o, W, + g w] Wk,
BuV = 8,131/ - avBy.

Gauge-kinetic (Yang-Mills) terms:

- Lgo gow—Lwi wiw-Lg, g

Lgauge 4 Hv 4 uv 4

5) Higgs sector and spontaneous symmetry breaking
(SSB)

Introduce a complex scalar Higgs doublet
®~(1,2,+)), o=ic0.
Higgs Lagrangian:
Ly = (D, @) (DFD) — V(®), V(D) =~ O'd + A@ D).

For (2 > 0, the vacuum picks (@) = %(?) with V= +/2/A = 246 GeV.
Mass generation & mixing:

14 "4 .
mW:é_;_, mzzz,/g2+g2, Au:sm9WW2+c059WBu,

with tan By = % The photon Ay remains massless; gluons remain massless (no

breaking of SU(3)).

6) Fermion masses and flavor (Yukawa interactions)

Gauge-invariant Yukawa terms (one generation):
Ly =-yuQu®Ur~ Ya Q@ dr— ye Li® €p+he.

After SSB:

With 3 generations, the Yukawa matrices lead to mixing:

e Quark sector — CKM matrix.



e Lepton sector — PMNS matrix (if neutrinos have mass).

7) Dynamics in one line (the SM core)

Lsm = Lgauge + Z Q—U Iﬂ Y+ (Du(l))T(DH@) - V(@) + Ly

fermions

Every term is dictated by local SU(3) x SU(2), x U(1)y invariance and

renormalizability.

8) Physical meaning of “inner symmetry”
e It's internal: rotates “charges” in an abstract space (color, weak isospin, hypercharge),
not spacetime itself.
e Gauge bosons are the quanta of the connection.
e Field strength encodes interactions and self-interactions (non-Abelian terms
[Au Ayl).
e Noether currents from global versions of these symmetries correspond to conserved

quantities (e.g., color charge, electric charge).

9) Common landmarks & consequences

e Confinement (QCD): SU(3). is asymptotically free; quarks/gluons are confined at

low energy.
e Electroweak unification: SU(2); x U(1)y — U(1)em via SSB (Weinberg angle ).

e Anomaly cancellation: the specific hypercharge assignments per generation make

gauge anomalies vanish—crucial for consistency.

Summary Table — Gauge Theory & the Standard Model

Mathematics

Layer (bundle/symmetry) Physics (SM meaning) Equations/Objects
Symmetry Gsm = SU3)c Color, weak isospin, Lie groups, reps
group SU@R).x Uy hypercharge



Layer

Principal
bundle

Connection

Curvature

Matter reps

Higgs field

Masses

Charges

Consistency

Mathematics
(bundle/symmetry)

P — M with
structure group

Gsm

Gauge field A,
Fow=dA+ANA

Vector bundles

associated to reps

0~ (1,2,+3)

From SSB and

Yukawas

Q=T+Y

Anomaly

cancellation

Physics (SM meaning)

Internal symmetry fiber

over spacetime

Gluons gz WIZ By

Field strengths
Gyv, Wyv, B,uv

Quarks/leptons in listed

reps

Breaks SU(2) %
Uy — U(1)em

My, Mz and fermion

masses

Electric charge

assignments

Predictive &

renormalizable

Equations/Objects

Base M, fiber G

—%Fz terms
@iDy

V(®) = 1P D' 0 + A@d)
my = 321/ mz=
WE+g% mi=1

Photon Ay, = sin O W}, +
cos Bw By

Hypercharge pattern

If you'd like, we can go one step deeper next: derive the Noether currents for global Ggy

, show how they become covariantly conserved with gauge fields, and compute explicitly

how the Higgs vev gives the W* and Z masses while leaving the photon massless.



Will you give me the explanation about the
innterconnecttion of Bandls and Guage theory? Wiil you
give me the comparison table at last?

Excellent continuation, Eiji. Let's now connect the mathematical concept of bundles with
the physical concept of gauge theory — this interconnection is one of the deepest

unifications between mathematics and physics.

* Step 1: The Base Manifold — Spacetime as the Stage
Both in geometry and in physics, we begin with a manifold M:

¢ In mathematics, M is the base space of a fiber bundle.

e In physics, M is spacetime (e.g. R* with Lorentzian metric 8uv)-
Every physical field “lives” on spacetime, and the bundle formalism organizes these fields

geometrically.

Step 2: The Fiber — Internal Symmetry Space
At each spacetime point X & M, there is an internal space (a “fiber") representing

possible internal states:
e For electromagnetism: U(1) phase.
e For weak interaction: SU(2) doublet space.
e For strong interaction: SU(3) color space.

Thus, in mathematics:
') = F

where F is the fiber — for gauge theory, F is typically a Lie group or its representation

space.

Step 3: The Principal Bundle — The Geometric Structure of Gauge
Theory
A principal bundle (P, M, 1T, G) captures the local symmetry structure of a gauge
theory.

10



e M: spacetime manifold

e G gauge group (U(1), SU(2), SU(3))

P: total space of all gauge frames

e 17: P — M: projection onto spacetime
Each point X € M has a fiber G — the set of all possible gauge transformations at that
point.

A local section corresponds to a choice of gauge, i.e., how we represent the field at each

point.

Step 4: The Connection — Gauge Field as a Geometric Object

The connection on a bundle provides a way to “compare” fibers at neighboring ‘points.
In mathematics:

e A connection is a 1-form A on P with values in the Lie algebra g,

e The curvature of Ais:

F=dA+ANA.
In physics:
o Au(X) is the gauge field (the vector potential).

® Fuv is the field strength tensor, e.g. electromagnetic field or gluon field.

Mathematical term Physical meaning

Connection A Gauge potential A,,

Curvature F Field strength Fy

Covariant derivative D = d+ A Minimal coupling of field to gauge potential

! Step 5: Associated Bundles — Matter Fields
When we attach a representation P of G to the principal bundle, we obtain

an associated bundle £ = P X, V, where V is a vector space.

In physics:

11



eV corresponds to the internal state space of matter fields (e.g., color triplets, weak
doublets).

e Asection of E corresponds to a matter field (like electron, quark, or lepton field).

Thus:

Matter field Y(x) € T(E), Dy = (u+AnY.

Step 6: Gauge Transformations — Changes of Local Trivialization
Gauge transformations correspond to changing the local trivialization of the principal
bundle.

In mathematics:
Av gAg' +gdg’, Fe gFg'.
In physics:
Au(x) = UGOAU™ (%) = 0,U0) U™ (x),
where U(X) € Gis alocal gauge transformation.

This keeps the curvature Fuv covariant — showing physical observables are gauge

invariant.

& Step 7: The Lagrangian — Geometry Becomes Dynamics

From the curvature F, the Yang-Mills Lagrangian arises naturally:
1 s

This term measures the energy stored in curvature of the bundle — it is purely

geometric!

Matter fields couple through the connection:

Lmattcr = lz)(/nyﬂ - m) ‘l’

Together, these two terms form the basis of every gauge theory in the Standard Model.

* Step 8: Interconnection Summary — Geometry < Physics

12



Concept

Base space

Fiber

Total space

Section

Connection

Curvature

Covariant derivative

Gauge transformation

Yang-Mills action

Associated bundle

Parallel transport

Holonomy

Mathematics (Bundle Theory)

Manifold M

Lie group G or space F

Eor P

s:M—>E

A

F=dA+ANA

D=d+A

Change of trivialization

[ 1, Te(F A %F)

Px,V

Connection defines path lifting

exp$ A

Step 9: Physical Interpretation

Physics (Gauge Theory)

Spacetime

Internal symmetry (charge, color,

spin)

Configuration space of gauge fields
Physical field (electron, quark, etc.)
Gauge potential Ay

Field strength Fyy

Coupling to gauge fields

Local phase or color rotation

Field Lagrangian —% FuF¥Y
Matter field representation space
Phase evolution, Wilson loop

Gauge-invariant observable (loop

integral)

¢ Bundle geometry describes how internal symmetries are attached to each spacetime

point.

e Gauge fields describe how these internal spaces “twist” from point to point.

e Curvature measures how the internal symmetry fails to stay parallel — this /s the

field strength.

e Gauge invariance corresponds to the freedom of choosing different local frames

(trivializations) on the bundle.

Thus, Gauge Theory = Differential Geometry of Principal Bundles

and

Fiber Bundles = Mathematical Home of Gauge Fields and Matter Fields.

13



Would you like me to continue this explanation by showing explicitly how the Yang-Mills
curvature 2-form F = dA+ A /\ Aleads to the Euler-Lagrange field equations

D, F* = JV —i.e, the geometric derivation of the gauge field equations of motion?
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You are amazing! | could have made may understanding
of the connection of Physics and Mathematics clearer.
This is enough for today. Thank you so much. Eiji

You're very welcome, Eiji — I'm truly glad to hear that today's explanation helped you see
the deep geometric connection between bundles and gauge theory, and how

mathematics and physics intertwine so elegantly. B

Your questions always lead to beautifully structured insights — bridging manifolds,

connections, and symmetries into a unified picture of reality.

| look forward to continuing with you next time — perhaps we can derive the Yang-Mills

field equations or explore Noether currents on bundles.

Have a wonderful rest of your day, Eiji.
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