Mathematics and Physics
Eiji Kitajima (December 2025)

ﬂm interested in the interconnections of Physics and \
Mathematics. This time, | would like to pick up major
technical terms of Physics and Mathematics at first. And
then, I would like to know the over all interconnections of
those terms as a whole. At first, will you explain and define
the following Mathematical terms; Geometry, Algebra,
Group, Topology, Manifold, Bundle, Knot, in the way of
step-by-steps, using the simbols of the set theory or

chematics? At last, will you make the summary tabley

Sure, Eiji. I'll define each term in a "build-up” style: start from sets/maps, then add structure

step by step. (I'll keep the symbols fairly standard: sets, functions, relations, operations.)

0) Shared “language” we'll reuse (set-theoretic base)

1. Set: a collection X. Elements are X € X.
2. Map / function: f : X — Y assigns each X € X a unique f(x) € V.
3. Productset Xx Y ={(x,y) | xE X, yE Y}
4. Relation: R © X x X. An equivalence relation ~ satisfies:

o Reflexive: X ~ X

e Symmetric X~ Y=y~ X

e Transitive: X~ Y, Y ~Z=> X~ Z

Then the quotient set X/~ is the set of equivalence classes [ X].

5. Binary operation: * : X x X — X.

These are the “atoms” behind geometry/topology/algebra.

1) Algebra (structures on a set)

Step-by-step
1. Start with a set A.
2. Add one or more operations (and maybe constants):
e Example: (A, H)with+: AxA— A
e Example: (A,+,)with+,-: AxA— A

3. Add axioms (equations that must hold for all elements).

Examples (in one line each)
o Semigroup: (A, *) with associativity (@ * b) *x c= ax* (b * ¢).
e Monoid: semigroup + identity €with €* a=a* €= a.
e Group: (next section).

e Ring: (R, +,) where (R, +) is an abelian group, - associative, distributive laws hold.



e Vector space: set I/ with + and scalar multiplication F x V' — V satisfying axioms.

Key idea: Algebra = "set + operations + axioms.”

2) Group (symmetry as an algebraic object)

Definition (set-theoretic)
A group is a pair (G, -) where:

e Gisaset

e -: Gx G— Gisanoperation

satisfying, forall @, b, ¢ € G

1. Associativity: (@- b)-c=a-(b- ©)

2. Identity: 3 € € Gsuchthate-a=a-e=a

3 Inverse: Va € G, 3a! € Gsuchthata-a'=a'-a=e
Ifalsoa- b= b- a,its abelian.

Why it's “symmetry”

A group often acts on a set X via an action
a:GxX—-X, (gx-g-x

satisfying €+ X= Xand (818) * X= &1 (& * X).
This is the formal bridge to geometry/physics later (symmetries acting on spaces/fields).

3) Topology (continuous structure on a set)

Step-by-step
1. Start with a set X.

2. Choose a collection T & P(X) (a set of subsets of X). Elements of T are called open

sets.
3. Require the axioms:
A topology T on X satisfies:
1. @ETadXET
2. Arbitrary unions of opens are open: if {Uj}je; & T,thenU,c, U, E T
3. Finite intersections of opens are open:if U,V € T,thenUNV € T
Then (X, T) is a topological space.

Continuity in this language

A function f : (X, Tx) — (Y, Ty) is continuous iff for every open set V & Ty,

FAV={xeX | N EV}E 1.



Key idea: Topology = “which subsets count as open,” then continuity is preimage-of-open-

is-open.

4) Geometry (adding “measurement” or “shape data”)

Geometry usually means: start with a set/space and add structure that lets you talk

about length, angles, curvature, etc.

Step-by-step (a standard ladder)
1. Set X.
2. Add topology (X, T) so you can talk about continuity.
3. Often add a metric d : X x X — Ry satisfying:
e dXy)=0 & x=y
o dxy) =dy,x
o dx,2)<dx y+dy,2)

Then (X, d) is a metric space, and it induces a topology.
4. For "smooth geometry,” we'll upgrade to manifolds (next section).
5. On a manifold, add a Riemannian metric:
e For each point p, an inner product gp on the tangent space TpM
e Smoothly varying with p
Written as g or (gjj(X)) in coordinates.

Key idea: Geometry = topology + extra “rigid” structure (metric, connection, curvature...).

5) Manifold (a space that looks locally like R

Step-by-step
1. Start with a set M.
2. Give it a topology T so (M, T) is a topological space.
3. Require local Euclidean structure via charts.
A chart is a pair (U, @) where:
e U < Misopen
e @: U — R"isahomeomorphism onto its image ¢(U) & R”
4. A collection of charts {(Uj, @)} covering M is an atlas.

5. For a smooth manifold, require that for overlaps uin Uj 7 @, the transition maps
@jo @' dUiN Up — @iUiN Up)
are C* (smooth).

Then M is an N-dimensional smooth manifold.



Key idea: A manifold is “globally possibly curved/complicated,” but locally it behaves like
R”.

6) Bundle (a structured family of spaces parametrized by a base)

Step-by-step
A fiber bundle is data (£, B, 17, F) with:
1. Total space E (a set/space)
2. Base space B
3. Projectionmap 7: E — B
4. Typical fiber F

Such that locally it looks like a product:
For each b € B, there exists an open neighborhood U & B and a homeomorphism (or

diffeomorphism in smooth case)
Srg ) —s UxF

satisfying pr, o ® = on 11 (V).
(So @ preserves the projection to U.)

Important special cases
e Trivial bundle: £ = B x F, (b, f)= b.
e Vector bundle: fibers 77! (b) are vector spaces and the local trivialisations respect
linear structure.
e Tangent bundle of a manifold M: TM = Upem ToMwith it TM — M.

e Principal G-bundle: fiber looks like a group G and G acts freely and transitively on

each fiber.

Key idea: Bundle = “space of local products glued together.”

7) Knot (an embedding, studied up to deformation)

Step-by-step
1. Start with a circle S' (topologically, a 1D closed loop).
2. Put it into 3D space (typically R* or S*) via an embedding

K:S'6R

meaning K is injective and homeomorphic onto its image (no self-intersections).

3. Two knots Kj, K; are considered equivalent if there exists an ambient isotopy:

a continuous family of homeomorphisms Hz : R* — R3 with Hy = id and



Hi(Ko(Sh) = Ki(SY).

This captures "deforming the knot without cutting.”

4. A knot invariant is a function /(knot) that is the same for equivalent knots.

(Examples of invariants exist—polynomials, groups, etc—but I'll keep this first pass

foundational.)

Key idea: Knot theory = topology of embeddings S' C R? up to continuous

deformation.

Summary table (Mathematics-set-theory viewpoint)

Term

Algebra

Group

Topology

Geometry

Manifold

Bundle

Knot

Core data (set-theoretic)

Set A

Set G

Set X

Space X

Set M

Spaces E, B+ map TT :

FE— B

S' + ambient space

Extra structure / axioms

operations + axioms

associative op, identity,

inverses

opensets T & P(X) with

union/intersection axioms

topology + metric/inner

products/curvature, etc.

topology + atlas of charts to

R smooth transitions

local product structure

mi(U)=UxF

embedding S' © R,

equivalence by isotopy

Typical notation
(A7 *)’ (A’ f’ .)

(G, ea'

x,nuver

X, a). g gj

U.¢).¢: U—-R"

(E5 Ba r[a F)' o

K:S'6R

If you want, in the next step we can do exactly what you asked overall: connect these

terms as a single “map” (e.g., groups act on manifolds, bundles encode gauge

fields, knots relate to 3-manifolds and to gauge-theory invariants, etc.) and make a

second table that explicitly pairs each mathematical object with its most common physics

appearance (symmetry, spacetime, gauge field, topological charge...).



Next, will you explain and define the terms of Physics in
the followings; Clasical Mechanics, Special Relativity,
General Relativity, Quantum Mechanics, Quantum Field
Theory, String and Superstring Theory, Quantum Gravity,
Twister Theory?

Absolutely, Eiji.

I'll treat each physical theory the same way you asked for mathematics:

start from basic objects (sets, variables), add structure (geometry, algebra), then state
the governing principle and equations.

I'll also keep an eye on how each theory upgrades the previous one.

0) A unifying viewpoint (before details)

All major physical theories can be described by the same abstract pattern:

Geometry of spacetime + Physical variables (fields) + Symmetry + Action / equations

What changes from theory to theory is:
e What spacetime is
e What the variables are
e  Which symmetry group acts

e How dynamics is defined

1) Classical Mechanics (CM)

Step-by-step
1. Configuration space

A particle system is described by a smooth manifold:

Q (e.g. R® for one particle)
2. State space

e Lagrangian picture: (g, @) € TQ (tangent bundle)
o Hamiltonian picture: (@, p) € T*Q (cotangent bundle)

3. Dynamics

Defined by an action functional

Slql= | Lg.q.bdt
4. Law of motion

daL oL _,

I D e e
65=0 dtog oq



Core idea
e Particles follow deterministic trajectories
e Time is absolute

e Geometry: Euclidean space

2) Special Relativity (SR)

Step-by-step
1. Spacetime replaces space + time
M=R"

2. Geometric structure

Minkowski metric:

Nuv = diag(=1,1,1,1)
3. Invariant quantity
ds® = 1y dx“dx’
4. Symmetry

Lorentz group:
50(1,3)

Core idea
e Space and time form a 4D geometry
e Physical laws invariant under Lorentz transformations

e No gravity yet

3) General Relativity (GR)

Step-by-step
1. Spacetime becomes dynamical

A smooth 4D manifold:

(M, guv)
2. Geometry

o Metric gu(X)
e Curvature from Levi-Civita connection

3. Action

1
S= TenG J Rv-g d'x+ Sinatter

4. Field equations

Guv = 8”GT#V



Core idea
e Gravity is geometry
e Matter tells spacetime how to curve

e Spacetime tells matter how to move

4) Quantum Mechanics (QM)

Step-by-step
1. State space

A complex Hilbert space:

H
2. States
Yy e H
3. Observables
Self-adjoint operators:
A:H-H

4. Dynamics

Schrodinger equation:
d
h— =AI
hp 1) ¥)

Core idea
e Physical quantities are operators
e Outcomes are probabilistic

e Geometry moves from spacetime — Hilbert space

5) Quantum Field Theory (QFT)

Step-by-step

1. Fields instead of particles

¢:RP >V
2. State space
Fock space:
F(H)
3. Dynamics
Lagrangian density:
L(¢. 0ug)

4. Quantization



[¢(x), T(Y)] = ih&(x~ )

Core idea
e Particles = excitations of fields
e Relativity + quantum mechanics unified

e Gauge symmetry becomes fundamental

6) String Theory & Superstring Theory

Step-by-step
1. Basic object

One-dimensional string:

XH(o, T)
2. Worldsheet

2D surface £ embedded in spacetime

3. Action

Polyakov action:

= _-_-1 A/ — abn yu
5 4ﬂa’ I): h h OaX 617)(/_,

4. Extra dimensions

M'0 = M* x Calabi—Yaug
S. Supersymmetry

Bosons < fermions

Core idea
e Particles are vibrational modes
e Geometry, gauge fields, gravity emerge together

e Requires higher dimensions

7) Quantum Gravity (QG)

Step-by-step (conceptual)
1. Goal

Quantize spacetime geometry:

8w — Buv
2. Problem

Standard QFT fails (non-renormalizable)
3. Approaches
e Canonical quantization

e Path integral over geometries



e Loop Quantum Gravity

e String theory

Core idea

e Spacetime itself becomes quantum

e Smooth geometry may be emergent

8) Twistor Theory

Step-by-step

1. Replace spacetime

Points in spacetime < complex geometric objects

2. Twistor space

3. Correspondence

4. Physics

PT = CP’

Field equations become holomorphic geometry

Core idea

e Fundamental reality is complex geometry

e Spacetime emerges secondarily

e Extremely powerful for scattering amplitudes

Summary table (Physics <> Mathematics)

Theory

Classical Mechanics

Special Relativity

General Relativity

Quantum Mechanics

Quantum Field Theory

String Theory

Quantum Gravity

Mathematical
structure

Manifolds, symplectic

geometry

Minkowski geometry

Pseudo-Riemannian

manifolds

Hilbert spaces

Fields on spacetime

2D conformal

geometry

Quantum geometry

Core variables

q.p

8uv

#(X)

XH(0, T)

Buv
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Spacetime point <> complex line in twistor space

Governing principle

Least action

Lorentz invariance

Einstein equations

¥psi¥rangle)

Path integral

Worldsheet action

Yet unknown



Mathematical
Theory structure Core variables Governing principle

Twistor Theory Complex geometry Twistors Holomorphic structure

Where this is heading (next natural step)
From here, the big picture becomes very clean:
e Manifolds — spacetime
e Bundles — gauge fields
e Groups — symmetries
e Topology — conserved & quantized charges
e Category theory — unifying language
If you'd like, next we can:
o explicitly map each physics theory to the mathematical terms you listed earlier, or
e build a single “ladder diagram” showing how physics theories emerge by adding

structure step by step.
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Then, is it possible for you to show the interconnections of
the major terms of Mathematics and Physics that you have
explained and defiend above? Will you make the summary
table at last?

Yes — and this is exactly the right moment to connect everything into one coherent
picture.

What you have asked for is essentially:

“How mathematics provides the structural language, and physics chooses which
structures are realized in nature.”

Below, I'll do this in three layers:
1. A conceptual map (how ideas line up)
2. A step-by-step correspondence (from simple to advanced)

3. A clean summary table (Mathematics ¢ Physics)

1) The big conceptual picture (one sentence per layer)

At the deepest level:

Physics = Mathematics + Interpretation + Empirical meaning

More precisely:
e Sets & structures — describe possible worlds
e Symmetries & geometry — constrain physical laws
e Dynamics (actions, equations) — determine what actually happens
So mathematics supplies:
o objects
e relations
e transformations
Physics selects:
e which objects are spacetime
e which transformations are symmetries

e which quantities are observable

2) Step-by-step interconnections (ladder view)

Step 1— Sets — State spaces

12



e Mathematics:
Aset X

e Physics:
The collection of all possible states (positions, configurations, field values)

Every physical theory begins with “what can exist?”

Step 2 — Algebra & Groups — Symmetry

Mathematics
e Group(G,)
e Group action Gx X — X

Physics
e Symmetry transformations:
e rotations
e Lorentz transformations
e gauge transformations

Result
Symmetry => Conservation law (Noether)

Groups encode invariance; invariance controls dynamics.

Step 3 — Topology — Continuity & global structure

Mathematics
o Topological space (X, T)

e Continuous maps

Physics

¢ Continuous motion

e Global properties:
e winding numbers
e topological charges
e defects

Examples:

e Magnetic monopoles

e Instantons

e Knots in field lines

13



Topology explains why some physical quantities are quantized.

Step 4 — Geometry — Measurement & spacetime

Mathematics
e Metric spaces
o Differential geometry

e Curvature tensors

Physics
e Distance, time, causality
e Gravity as curvature (GR)

Key identification:
Metric g,y <> gravitational field

Geometry becomes a physical field.

Step 5 — Manifolds — Spacetime & configuration spaces

Mathematics
e Smooth manifold M

e Charts, atlases

Physics

e Spacetime M3

e Configuration space Q

e Phase space T°Q

Examples:

e Classical mechanics: trajectories on Q
e GR: curvature on spacetime manifold

Manifolds are the stage on which physics unfolds.

Step 6 — Bundles — Fields & gauge theory

Mathematics
e Fiberbundle 1: E— B

e Connections, curvature

Physics

14



e Gauge fields
e Internal symmetries
e Forces as connections

Dictionary:
Connection <> Gauge potential

Curvature <> Field strength

Forces are geometry on bundles.

Step 7 — Hilbert spaces — Quantum theory

Mathematics
o Complex Hilbert space H

e Linear operators

Physics
o States | )
o Observables A
e Probabilities via inner products

Linear algebra replaces classical geometry.

Step 8 — Fields & functional spaces — QFT

Mathematics
e Function spaces
e Operator algebras

e Representation theory

Physics
e Quantum fields
e Particle creation/annihilation
e Gauge symmetry representations

Particles are representations of symmetry groups.

Step 9 — Higher geometry & topology — Strings, gravity, twistors

Mathematics

e Moduli spaces

15



e Complex manifolds

e Category-like structures

Physics
e String theory
e Quantum gravity

e Twistor theory

Spacetime itself may be emergent from deeper mathematics.

3) Final summary table (Mathematics < Physics)

Mathematics

Set

Algebra

Group

Topology

Geometry

Manifold

Bundle

Connection

Hilbert space

Operator algebra

Representation theory

Knot theory

Complex geometry

Functional integration

Mathematical
meaning

Collection of elements

Operations + axioms

Symmetry structure

Continuity & global

form

Metric & curvature

Locally Euclidean

space

Local product

structure

Parallel transport

Inner-product vector

space

Linear maps

Group actions on

spaces

Embeddings up to
isotopy

Holomorphic structure

Measures on spaces of

fields

Physics interpretation

Possible states

Physical quantities

Conservation laws

Topological charges

Spacetime & gravity

Spacetime,

configuration space

Gauge fields

Force fields

Quantum states

Observables

Particle types

Field topology, flux

tubes

Twistor space

Path integrals

16

Appears in

All theories

M, QM

All

QFT, GR

SR, GR

CM, GR

QFT, SM

EM, YM

QM

QM, QFT

QFT

QFT

Twistor theory

QFT, QG



One-line unifying insight (the “take-home”)

Physics is the study of which mathematical structures nature chooses, and how
symmetry restricts their dynamics.

If you like, the next natural continuation would be:
e asingle diagram showing all theories as successive enrichments of structure, or

e a categorical formulation ("objects = theories, morphisms =

limits/quantizations/classical limits").

Just tell me how deep you want to go next, Eiji.

17



Your explanations and definitions and their
intterconnections which you have shown above are really
great and marvelous. This is enough for today. Thank you
so much. Eiji

Thank you so much, Eiji — that really means a lot to me.
I'm genuinely glad the explanations helped everything click and form a single, coherent

picture for you.

You've been asking exactly the right kinds of questions: not just definitions, but how
structures relate, upgrade, and unify across mathematics and physics. That's the mindset

behind a lot of modern theoretical work, and you followed it beautifully step by step.

Let's pause here, as you suggested.

Whenever you feel like continuing—whether it's:

e turning this into a single structural diagram,
e reformulating it in category-theoretic language,
e or diving deeper into any one theory (QFT, GR, twistors, strings, etc.),

I'll be very happy to pick it up right where we left off.

Have a wonderful rest of your day, and thank you again, Eiji
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