Mathematical Structures and Modern Physics
Eiji Kitajima (November 2025)

ﬂam interested in the interconnections of Physics and Mathematics. m
his time, | would like to know about the interconnections of
Mathematical Structures (Algebra, Topology, Geometry)and Modern
Physics (Electro Magnetics, Special and General Relativity, Quantum
Field Theory, String and Superstring Theory, Quantum Gravity). First of
all, Will you explain and define major theeoretical terms of the
Mathematical Structures (Algebra, Topology, Geometry) in the
mahematical terms in the way of step-by-step proceses? At last, give
me the summary tables of those major theoretical terms of

Q/Iathematical Structures. Eiji j

Let me start directly with the mathematical side, step by step, and keep the physics connections in the back
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of our minds for the next stage &

(At the end I'll give you summary tables for Algebra, Topology, and Geometry.)

1. Algebra — "Structures built from sets + operations”

1.1 Set and operation
e Set
A collection of elements: X = {X;, Xa, ... }.

¢ Binary operation on X

A map
XX X—> X, (Xy)= X*VY.

Example: addition + on R, matrix multiplication on Mp(R).

These are the raw ingredients for all algebraic structures.

1.2 Group
A group (G, ) is a set G with a binary operation - satisfying:
1. Closure: Va,bE G, a-b < G.
. Associativity: (3 b)-c=a-(b- ).
. Identity: 3@ € Gsuchthat e-a=a-e=aforalla € G
Clnverse: Va € G, 3a! € Gwitha-a'=a'-a=e

A W o

ifalsoa- b= b- aforall a, b, itis an abelian group.

Typical examples. (Z,+), (R",+), rotation group SO(3).

1.3 Ring
Aring (R, +, ") is a set R with two operations:
1. (R, +) is an abelian group (with identity 0).
2. Multiplication - is associative: (ab)c = a(bc).
3. Distributivity:
alb+c=ab+ac, (a+byc=ac+bc

If there is a multiplicative identity 1 and multiplication is commutative, we say a commutative ring with 1.

Examples. Z, polynomial ring K[X] over a field k, matrix ring Mp(R) (non-commutative).



1.4 Field
Afield F is a commutative ring in which:
e Every nonzero element has a multiplicative inverse.

So (F,+) is an abelian group with identity 0, and (F \ {0}, ) is an abelian group.
Examples. Q, R, C, finite fields F 5.

Fields are the scalars for vector spaces.

1.5 Vector space
A vector space V over a field F is:
e An abelian group (V,+),

e Together with scalar multiplication
FxV-oV, AveAv

satisfying linearity axioms:
ANu+v)=Au+Av, (A+ uyv=Av+ puy,
Ap)v=Auv), lv=v.

Examples. F", space of polynomials, space of functions.

1.6 Linear map and representation

e Alinearmap T : V — W between vector spaces over F satisfies
T(u+v)=T(W+ T(v), T(AV) = AT(v).

e A representation of a group G on a vector space I/ is a homomorphism
p:G— GL(V)

where GL(V/) is the group of invertible linear maps V — V.
So each group element acts as a linear transformation.

This is where algebra starts to look like “matrices acting on vectors”.

1.7 Module and algebra over a field
e A module over a ring Ris like a vector space, but scalars come from a ring R (not necessarily a field).

¢ Analgebra over a field F is a vector space A over F with a bilinear multiplication
AxA— A (ab)~ ab.

Example: matrix algebra M,(F), algebra of polynomials.

1.8 Lie algebra

A Lie algebra g over a field F is a vector space with a bilinear operation (Lie bracket)

[+]78xg—8
such that:
1. Antisymmetry: [X, Y] =Y, X].
2. Jacobiidentity: [X, [V, Z]] + [Y,[Z X]1 +[Z[X, Y]] = 0.
Example: 11 X 1 matrices with bracket [A, B] = AB— BA.



1.9 Ideals and quotients (key structure tools)

e Anideal /in aring R a subset closed under addition and absorbing under multiplication by R.

Then we can form a quotient ring R//.
 Similarly for groups: normal subgroup N < G gives quotient group G/N.

These constructions appear everywhere, including symmetry breaking, etc.

2. Topology - “Structure of nearness and continuity”

2.1 Topological space and open sets
A topological space is a pair (X, T ) where:
e Xisaset,
o T € P(X)isa collection of subsets (called open sets) such that:
1. DX e T,
2. Arbitrary unions of setsin T arein T,
3. Finite intersections of setsin T arein T .

T encodes the notion of “neighborhoods” and “continuity”.

2.2 Continuous map and homeomorphism
Given topological spaces (X, Tx), (Y, Ty):
e Amap f: X — Y is continuous if for every open set U & Ty,
the inverse image £ (U) is open in X.
e A homeomorphism is a bijective continuous map with continuous inverse.

Two spaces related by a homeomorphism are considered “topologically the same”.

2.3 Metric space
A metric space (X, d) is a set X with a function

d: Xx X —[0,)

satisfying:
1. dx,y)=0 & x=y,
2. Symmetry: d(X, ¥) = d(y, X),
3. Triangle inequality: d(x, 2) < d(x, y) + d(, 2).
The metric induces a topology: open sets are unions of open balls BA{(X) = {y : dx,y)<r}.

2.4 Compactness and connectedness
o Aspace X is compact if every open cover has a finite subcover. Intuitively: “no infinite escaping”.
e Aspace X is connected if it cannot be written as a union of two disjoint nonempty open sets.
Roughly: “it is in one piece”.

These properties are crucial both in pure topology and in analysis and geometry.

2.5 Topological manifold
A topological manifold of dimension /1is a topological space M such that:
1. It is Hausdorff (points can be separated by neighborhoods).

2. It has a countable basis (second countable).



3. Every point has a neighborhood homeomorphic to an open setin R”.

Intuitively: “locally like R"".

2.6 Homotopy and fundamental group

¢ A homotopy between two continuous maps £, g: X — Y is a continuous map
H:Xx[0,1]>Y
with H(X, 0) = f(x), Hx, 1) = £(X).

So f can be continuously deformed into g.

o The fundamental group 1T (X, Xp) is the set of homotopy classes of loops based at Xp,

with operation given by concatenation of loops. It measures “holes"” in a space.

These are basic tools of algebraic topology.

3. Geometry - “Shape with smooth and metric structure”

Here we move from topological to smooth and metric structure.

3.1 Smooth manifold
A smooth manifold M of dimension nis:
¢ A topological manifold,
o Equipped with an atlas of charts (Ug, @q) where
o : Ug — R™is a homeomorphism,
e Such that all transition maps @ o @, are smooth.

So we can do calculus on M.

3.2 Tangent space and vector field
e At each point p € M, the tangent space TpM is a vector space consisting of “derivations at D" or

equivalence classes of curves. It is the linearization of M at p.
e Avector field X on M assigns to each point P a tangent vector X(p) € TpM smoothly.

This is the stage for differential equations on manifolds.

3.3 Riemannian metric

A Riemannian metric on a smooth manifold M is a smoothly varying inner product
&p: TpM x TpM — R

for each p € M, such that:
e gpis positive-definite,
e The components gji(/0) in local coordinates vary smoothly with .

The triple (M, £) is a Riemannian manifold. It defines lengths, angles, and volumes.

(For relativity, one uses a pseudo-Riemannian or Lorentzian metric, where the inner product is not positive-

definite.)

3.4 Connection and covariant derivative
A connection on a manifold (or more generally on a vector bundle) allows us to differentiate vector fields

along curves.



On a Riemannian manifold, the Levi-Civita connection V is a unique connection such that:

1. Itis torsion-free,
2. Itis compatible with the metric: V g= 0.

Given a vector field X and Y/, the covariant derivative V x Y is another vector field expressing the rate of

change of Y along X.

In local coordinates, V is described using Christoffel symbols Ff}

3.5 Geodesic

A geodesic is a curve Y(f) on M that satisfies
\Y yy e 0,

meaning its acceleration (covariant derivative of velocity) is zero.

Geometrically: “straightest possible curve”.

In Riemannian geometry: geodesics locally minimize distance.

In relativity: geodesics describe free-fall worldlines.

3.6 Curvature

The Riemann curvature tensor R is defined by
RX,Y)Z=VxVyZ-VyVxZ-VixnZ.

From R, we can form:
o The Ricci tensor RicC,
o The scalar curvature R (sometimes also denoted R).

Curvature measures the failure of space to be “flat” (Euclidean).

3.7 Differential forms and exterior derivative
o A differential K-form W is an antisymmetric K-linear map on tangent vectors, smoothly varying over M.

e The exterior derivative d maps K-forms to (k+ 1)-forms and satisfies:

=0, dwAn=dwAn+-)wA dn.
Differential forms unify integration (line, surface, volume integrals) and are central in modern formulations of

electromagnetism and gauge theories.

3.8 Fiber bundle and principal bundle (geometric “container”)
A fiber bundle 77 : E — M consists of:

e Total space E,

e Base space M,

e Projection map 7T,

o Typical fiber F,

such that locally £ = U x F over small open sets U C M.

A principal G-bundle is a fiber bundle whose fiber is a Lie group G acting freely and transitively on each
fiber.

Connections on principal bundles and their curvature are the natural language of gauge fields.



4. Summary tables of major theoretical terms

4.1 Algebra — main structures

Term

Set

Binary operation

Group

Abelian group

Ring

Field

Vector space

Linear map

Module

Algebra over

field

Lie algebra

Ideal / quotient

Representation

Data / Structure

X

x: Xx X=X
(G,

Group

(R+9)

(V,+) over field F

T:V-oW

M overring R

Vector space + bilinear

multiplication

g[.1

Ideal / C R quotient R//

p:G— GLV)

4.2 Topology — main structures

Term

Topological space

Open set

Continuous map

Homeomorphism

Metric space

Compact space

Connected space

Data / Structure

X.T)

f:X>Y

Bijective, continuous,

continuous inverse
(X, d

X

Key Axioms / Properties

None beyond membership
Closed on X

Associative, identity, inverse
Commutative: ab = ba

(R, +) abelian group,

distributive, assoc. mult.

Commutative ring, nonzero

elements invertible

Abelian group + scalar

multiplication (linearity)

Preserves addition and scalar

multiplication

Like vector space but scalars

from ring R

F-bilinear product Ax A— A
Bilinear, antisymmetric, Jacobi
identity

RI C [; factor structure

Group homomorphism

Key Condition / Meaning

T open sets satisfying

union/intersection axioms
Basic “neighborhoods”

Inverse image of open sets is

open

Topological isomorphism

d satisfies metric axioms

Every open cover has finite

subcover

Not union of two disjoint

nonempty open sets

Typical Example

Z,R, {1,2,3}

+on R, matrix mult.
(Z,+), SO(3)
(R,+)

Z, My(R)

R,C,Fp

R”, polynomial space

Matrices acting on vectors

Z-modules = abelian groups

Matrix algebra, polynomial

algebra

gln(R) with [A, B] = AB— BA

Z/nZ

Rotations as matrices on R’

Example

R with standard open intervals

(ab)CR

Usual continuous functions

R—R

R and open interval (=1, 1)

Euclidean space R”

Closed interval [0, 1] C R

[0,11R



Term

Topological

manifold

Homotopy

Fundamental

group

Data / Structure

M

H: Xx[0,1] > Y between

maps

(X, Xo)

4.3 Geometry — main structures

Term

Smooth manifold

Tangent space

Vector field

Riemannian metric

Connection

Geodesic

Curvature tensor

Ricci / scalar

curvature

Differential form

Exterior derivative

Fiber bundle

Principal bundle

Data / Structure

M with smooth atlas

oM

X:M—>TM

g ToMx T,M R

V (covariant derivative)

Curve ywith V=0

RX,V)Z

Ric.R

Antisymmetric multilinear

tensor field

d: QM) — Qk (M)

m: E— M with fiber F

Bundle with Lie group G as
fiber

Key Condition / Meaning

Locally homeomorphic to R”

Continuous deformation of

one map into another

Homotopy classes of loops,

group under concatenation

Key Idea / Property

Locally R™ with smooth charts

Linearization at a point

Smooth assignment p =

X(p) E T,M

Inner product smoothly

varying with p

Differentiates vector fields

along directions

“Straightest” or locally shortest
path

Measures noncommutativity

of covariant derivatives
Traces of curvature tensor
Generalized integrand;
supports Stokes’ theorem

Generalized differential,
satisfies @? = 0

Locally E = Ux F

Basic object for gauge theories

Example

Circle S*, sphere S?

Contracting a loop in a disk

m(sH =2

Example

Sphere S?, torus T2

Tangent plane to sphere at a

point

Velocity field of a flow
Standard metric on R”
Levi-Civita connection

Great circles on a sphere

Zero in flat space; nonzero on
sphere

Used in Einstein field equations
1-forms, 2-forms in
electromagnetism

dF =0,d* F=JinEM (ater)
Tangent bundle TM, vector

bundles

Frame bundle, gauge bundles

If you'd like, in the next step we can take these tables and show how each structure appears in:

s Electromagnetics,

Special & General Relativity,
Quantum Field Theory,
String & Superstring Theory,

Quantum Gravity,

with a big comparison table “Mathematical structure < Physical theory”.



Next, will you explain and define major theoretical terms of the Modern
Physics mentioned above in the mahematical terms in the way of step-
by-step proceses? At last, give me the summary tables of those major
theoretical terms of Mathematical Structures.

I'l go theory by theory and define the major theoretical terms in mathematical form, step by step.
At the end I'll give you summary tables, with a column showing which mathematical structure (algebra /

topology / geometry) each term mainly lives in.

1. Classical Electromagnetics (Electro-magnetics)

1.1 Spacetime and coordinates

e In relativistic EM we work on Minkowski spacetime:
R 2 ¥ =0 X, 8, 0) = (ct x y,2),
with metric
Nuy = diag(=1,+1,+1,+1)

(or the opposite sign convention).

Mathematical structure: 4-dimensional vector space with a Lorentzian inner product (geometry).

1.2 Electric and magnetic fields
In 3D vector form (pre-relativistic):
o Electric field: E(X, ) € R>.
e Magnetic field: B(X, t) € R®.

These are vector fields on R3.

1.3 4-potential and field strength tensor
In covariant form, define the 4-potential:
Aux) = (¢(x)/ ¢, ~A(X)).

where ¢ is the scalar potential and A the vector potential.
Define the field strength tensor (2-form):

Fuy = 8,Av— VAL
In matrix form,

0 -—E/c -Ejc -Ejc
Eic 0 -B, By
Ey/c Bz 0 _BX
E;c -B, By 0

Fu =

Mathematically: F is a 2-form F € Q?(M) on spacetime M.

1.4 Maxwell’s equations

In 3-vector form, in Sl units:



%%, VXB=Mﬂ+m&95

V KR~ at

In covariant form, with 4-current JH = (cp, J):
1. Inhomogeneous:
(3,,/'-’“/ = [.lQJV.
2. Homogeneous:
5[/]/:“‘/] =0 or dF= 0.

Here OpzFyy) means antisymmetrization.

1.5 Differential form formulation
Let M be 4D spacetime:

o A 1-form (connection) on M,

o F = dA 2-form (curvature),

o J: 3-form (current density).

Maxwell's equations:
dF =0, dxF=J.

Here * is the Hodge star determined by the metric on spacetime.

1.6 Action and gauge symmetry U(1)

Electromagnetic Lagrangian density:
! Hv H
Lem = '—ZFHVF —.J AIJ'
e Gauge symmetry: for a scalar function AX),
Ay Ayt A,

which leaves F,y invariant. Mathematically, this is a connection on a principal U(1)-bundle.

2. Special Relativity

2.1 Minkowski spacetime and Lorentz transformations
e Spacetime: vector space M = R!3 with metric fyy.
e Lorentz transformation AX,: linear map preserving the metric:
nuvA‘fz/\‘Z; = Nap-
e The set of such transformations forms the Lorentz group O(1, 3), with connected component

SO'(1,3).

2.2 Four-vectors and invariants

A four-vector Vﬂ transforms as
e S
VH=ARVY.

The squared norm is invariant:



VyVH = nu VHVY.
Examples:
¢ Position: X! = (ct, X),
e 4-velocity: UM = y(C, V),
e 4-momentum: p4 = mur.

Invariant:

pupt =—nr'c.

2.3 Proper time and worldline

A worldline is a curve Y(T) in spacetime.

Proper time element:
1
S T v
ar’ = pe) Nuvdxtdx”.
Action for a free particie:

S=-mc& | dr.

Variation gives geodesic equation in Minkowski space (straight line).

3. General Relativity

3.1 Spacetime as a pseudo-Riemannian manifold
Spacetime is a 4D smooth manifold M with Lorentzian metric g,,,(X) of signature (— + ++).
o At each point: tangent space TxM,

e Metric defines inner product on each TxM.

3.2 Levi-Civita connection and Christoffel symbols
The Levi-Civita connection V is uniquely determined by:
1. Torsion-free,
2. Metric-compatible: V 38, = 0.

In coordinates, we write
¥ e v v_y/A
VoV’ =0,V +T V7%,
where Christoffel symbols:

1

= Egpa(augva +0v8uo — Po8uv)-

3.3 Curvature tensors

The Riemann curvature tensor:

R

= iy 0 A 1P 1A
auv_a/!rea Ovrﬁa+[yAl vo rvArucr

From this:

e Ricci tensor:

Riv= R

10



e Scalar curvature:

R=g"Ry,.

Combine into Einstein tensor:

1
Guv = Ruv — EguvR

3.4 Stress—energy tensor and Einstein equations

The stress—energy tensor T,_,V encodes energy-momentum density and flux.

Einstein field equations:

3G
Gpv = 7 Tyv~

These are nonlinear PDEs for the metric gy .
3.5 Geodesic equation
Worldlines of free particles satisfy

PR I dx? -

drr " Ydrdr
These are geodesics in the curved spacetime (M, g).
3.6 Einstein-Hilbert action
The gravitational action:

e
SGR [g] = —1676 j p RV =g d4X+ smattcr[g, ﬁelds],

where g = det(guy)-

Varying w.rt. g,y gives Einstein’s equations.

4. Quantum Field Theory (QFT)

4.1 Fields as operator-valued functions

On spacetime M, a quantum field is an operator-valued distribution:
e Scalar field: $(X),
e Spinor field: G,
¢ Gauge field: ﬁ#(x).

They act on a Hilbert space H of states.

4.2 Lagrangian density and action
Example: real scalar field ¢

e Lagrangian density:

1 1
L=30u Mg~ 5mzqﬁz = V($).

e Action:

11



Sigl= 1 Ld'x
Euler-Lagrange equation:

oL oL

%’a"(a—(a,};}):o = (d+mp+V(g)=0.

4.3 Canonical commutation relations

For scalar field ¢(X) and conjugate momentum 7T(X):
[$(t, %), (L Y)] = S~ y).
[3(t,X), (L y)] =0,  [A(t,x), 7(t,y)] = 0.

These define the quantum algebra of observables.

4.4 Creation and annihilation operators

Field operator decomposes into modes:

&P . _
poo=1J ﬁ% (BpeP X+ 3, &),

with
(8. 8] = 2m)*2E, (P —P).

a': creates a particle; @ annihilates a particle.

4.5 Path integral and generating functional

Formal path integral:
zZ1)=1 D¢ eXp{E’ | dxL+Jp).

Correlation functions:

1 5§21

O 1 T{p(x1) " ¢(Xn)} |1 0) = 710 3J00)— 8J0) |
J=0

Here Feynman diagrams represent terms in perturbative expansion of these correlation functions.

4.6 Symmetries and Noether currents

If the action is invariant under a continuous transformation of fields:
$X) = $(X) + 6P(X),
there is a conserved Noether current /# with
8t =0.

Example: global phase symmetry ( — ei"(,U — conserved charge (particle number).

5. String Theory and Superstring Theory

5.1 Worldsheet and embedding

12



A string sweeps out a 2D worldsheet X with coordinates ( T, 0).

¢ Embedding into target spacetime M:

XHT,00: 2> M.

5.2 Nambu-Goto and Polyakov actions

Nambu-Goto action:
Sxa=-T ) dPov/—detha.

where T is string tension and
hab = 82XH0pX" Gy(X)
is the induced metric from target metric Gyy.

Polyakov action (equivalent, more convenient):
T -
Sz | A ov—=h h3,X opX" Gu(X),

where A,p is an independent worldsheet metric.

5.3 Conformal symmetry and Virasoro constraints
In critical string theory, the worldsheet theory is a 2D conformal field theory (CFT).
o Local rescaling: fiz6(0) = €9 h,p(0).
o Constraints become conditions on the worldsheet energy-momentum tensor 7 4p, leading to Virasoro

generators L.

The Virasoro algebra:

[y Lo} = (07— W)L+ %(m3 — M)Smeno.

5.4 Mode expansion and oscillators

For a closed string, one can expand:
; . ld 1 Lpp (T
XH(t, a)=x“+ap”r+/~/7 h3 ;(0#9 in(1-0) 4 g g M™D) ,
n=0

The coefficients @, @ become oscillators satisfying commutation relations, forming an infinite-dimensional

algebra.

5.5 Supersymmetry (superstrings)
Introduce fermionic worldsheet fields W*(0, T).
o Worldsheet supersymmetry relates X and (¥,

e Leads to super-Virasoro algebra with generators L, (bosonic) and G, (fermionic):

{Gr, Gs} =2Lps+ -

Critical superstring theories live in 10D spacetime, with target-space supersymmetry (supergravity).
6. Quantum Gravity (overview of major terms)

13



Quantum gravity is not a single finished theory. Major mathematical terms appear in approaches like:

6.1 Metric path integral (covariant approach)

Formal path integral over metrics:
Z= ] Dgu e Sarlglr

e Integration measure over equivalence classes of metrics modulo diffeomorphisms.

e Highly non-trivial mathematically.

6.2 Canonical quantization and Wheeler-DeWitt equation

Split spacetime into space + time: M = X x R,
e Basic variables: 3-metric h,'j(X) on X and its conjugate momentum ().
e Promote to operators ?]/j, 71"] with commutation relations.

The Wheeler-DeWitt equation (schematically):
AY[h] =0,

where W[ ] is a “wave functional” of 3-geometry h,‘j, and A is a Hamiltonian constraint operator.

6.3 Loop quantum gravity (just the key terms)
Use connection variables and holonomies:
e Basic configuration variable: SU(2) connection AZ(X).
e Conjugate momentum: densitized triad E7(X).
e States: functionals of holonomies along loops — spin networks (graphs with SU(2) representation
labels).
Key mathematical terms: connections, holonomies, SU(2) representation theory, graphs (combinatorial

topology).

7. Summary tables — major theoretical terms & mathematical structures

7.1 Electromagnetics & Special Relativity
Main structure (Alg / Top /

Term Symbol / Equation Short mathematical definition Geo)

Minkowski spacetime R13, Nuv 4D vector space with Lorentzian Geometry
metric

4-vector VH Element of R transforming under Geometry / Algebra
Lorentz

Lorentz group 0(1,3), SO'(1,3) Linear transformations preserving Algebra (Lie group)
nuv

4-potential A‘, 1-form (connection) on spacetime Geometry / Topology

Field strength tensor Fuv =0,A,— 8,A4 2-form (curvature of U(1) Geometry / Topology

connection)
Maxwell's equations OuFH = pyJ¥, dF =0 PDE system for F and J Analysis / Geometry

4-current JH Conserved vector field, 0, J+ = 0 Geometry / Algebra

14



Main structure (Alg / Top /

Term Symbol / Equation Short mathematical definition Geo)

Gauge symmetry U(1) Ay— Ayt auA Local phase transformation, Abelian Algebra / Topology
gauge group

Proper time ar? = —é Ih,vdX'” dx¥ Metric-induced invariant along Geometry

worldline

7.2 General Relativity

Term Symbol / Equation Short definition Main structure
Spacetime manifold M 4D smooth manifold Topology / Geometry
Lorentzian metric Buv Symmetric nondegenerate tensor of Geometry
signature (— +++)
Christoffel symbols r ﬁv Connection coefficients (Levi—-Civita) Geometry
Riemann tensor R%uv Curvature of connection Geometry
Ricci tensor va = R}LM Trace of Riemann tensor Geometry
Scalar curvature R=g"Ry Trace of Ricci tensor Geometry
Einstein tensor G”v = R,uv = %gw,R Divergence-free curvature Geometry
combination
Stress—energy tensor Tuv Energy-momentum density & flux Geometry / Analysis
Einstein equations G,,V = XL.‘LG Tuy Field equations for metric Geometry / Analysis
Geodesic equation X+ F‘JAXVXA =0 Equation for free-fall curves Geometry
Einstein—Hilbert action S= %ﬁg J R/-g d'x Gravitational action functional Geometry / Analysis

7.3 Quantum Field Theory

Term Symbol / Equation Short definition Main structure

Quantum field 30, P(x), AM(X) Operator-valued distributions on Functional analysis / Algebra
spacetime

Hilbert space H Complex inner-product space of Algebra / Analysis
states

Lagrangian density L(¢,0¢) Local scalar functional of fields Analysis / Geometry

Action S=1/ Ld*x Integral functional over spacetime Analysis

Commutation relations [$, 1 = ihé Canonical quantization algebra Algebra

Creation/annihilation Qp, Q:, Operators adding/removing quanta Algebra (Fock space)

Path integral Z[J] = it D¢ el Functional integral generating Analysis (measure theory)

correlations

Green's function for field equations Analysis / Distribution theory

Ar(X—Y)

Feynman propagator

15



Term

Noether current

Symbol / Equation

Poup=0

7.4 String and Superstring Theory

Term

Worldsheet

Embedding map

Induced metric

Nambu-Goto action

Polyakov action

Conformal

symmetry

Virasoro algebra

Worldsheet

fermions

Super-Virasoro

algebra

Symbol / Equation

X with coords (T, 0)

XH(o,T)

hap = 3 XH0pXY Gyy

Swg=-T | +~deth dfo

G =

hap — EHan hap

(L, La] = (M=) Lpin+

YH(o. 1)

{Gr, Gs} =2Lps+ "

7.5 Quantum Gravity (schematic)

Term

Metric path integral

3-metric

Wave functional

Wheeler-DeWitt eq.

Connection variable

Spin network

Symbol / Equation

Z= [ Dg, e
hi(x)

Py

A¥[h) =0

A(x)

Graph with SU(2) labels

If you'd like, the next step can be:

e A big comparison table:
"(Algebra / Topology / Geometry term) < (Appears as ... in EM / SR/ GR / QFT / String / QG)"

P
-L [ V=Rhh?a, X opX, dPo

Short definition

Conserved current from continuous

symmetry

Short definition

2D manifold swept by string

Map £ — M into target

spacetime

Pullback of spacetime metric to

worldsheet

Area of worldsheet times

tension

Equivalent rewriting

Local rescaling symmetry on

worldsheet

algebra

2D spinor fields coupled to X#

Supersymmetric extension of

Virasoro

Short definition

Functional integral over metrics
Riemannian metric on spatial slice £

Quantum state as a functional of

geometry

Hamiltonian constraint equation for

quantum gravity

SU(2) connection on 3-space (in
LQG)

Basis state of quantum geometry
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Infinite-dimensional symmetry

Main structure

Algebra / Geometry

Main structure

Topology / Geometry

Geometry

Geometry

Geometry / Analysis

Geometry / CFT

Geometry / Algebra

(CFT)

Algebra

Algebra / Geometry

Algebra

Main structure

Analysis / Geometry

Geometry

Functional analysis /

Geometry

Analysis / Constraint algebra

Geometry / Algebra (gauge)

Algebra (rep theory) /
Topology



Will you show me the major interconnections of Mathematical
Structures and Modern Physics which you had shown above, in
terms of mathematical terms in the way of step-by-step. At last, give
me the comparison summary tables.

BERR: 41s >

I'll knit everything together now:
1. Step-by-step interconnections (Algebra / Topology / Geometry <> each modern theory)

2. Comparison summary tables at the end.

1. Algebra <> Modern Physics (step by step)

1.1 Symmetry groups and actions

For any modern theory we can write an action

Sifields] = | L(fields, ofields) d"x

and look at its symmetry group G.
e Electromagnetics (EM)
e Action (in 4D Minkowski):

SF{M[A] = —% I FMVF/’(V OHX.

e Gauge group: U(1).
Transformation: Ay - A, + 8,A.

e Special relativity (SR)

o Free particleaction S=-mc® [ dr.

e Spacetime symmetry group: Poincaré group = translations & Lorentz group S0°(1,3).
e General relativity (GR)

e Einstein-Hilbert action:

Serl&] = " | Ry/-gd'x
161G

¢ Symmetry: diffeomorphism group Diff(M) (smooth coordinate changes).
e Quantum Field Theory (QFT)

e E.g.Yang-Mills action:

Sym[A] = —% J tr(Fqu“V) d*x

with Ay, taking values in Lie algebra g of gauge group G (e.g. SU(3), SU(2) x U(1)).
e String & superstring theory
o Worldsheet Polyakov action has conformal symmetry (2D) and sometimes worldsheet
supersymmetry.
e Symmetry algebras: Virasoro algebra, super-Virasoro algebra.
¢ Quantum gravity (QG)
e Canonical GR: constraints generate diffeomorphisms; constraint algebra (Dirac algebra) is an
infinite-dimensional Lie algebra.
e Loop QG: uses SU(2) connections and SU(2) representation theory.

So: groups and Lie algebras codify symmetry of actions.
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1.2 Representations and “what a particle/field is”

Given a symmetry group G, a field or particle type is specified by a representation
p: G- GLV).
* EM: charge g means the matter field ((X) transforms as
Yx) = @Y,

a 1D representation of U(1).

e SR:free particle states form representations of the Poincaré group; mass and spin
label irreducible representations.

e GR: local Lorentz symmetry; spinor fields transform under spin group Spin(1, 3).

e QFT (Standard Model):
e Quarks: in the fundamental representation of SU(3) (color), doublets of SU(2), etc.
e Gauge bosons: in the adjoint representation of the gauge group.

e String: excitations of the string form infinite-dimensional representations of Virasoro or super-
Virasoro algebra; in target space they realize reps of spacetime symmetry and gauge groups.

e QG:in LQG, spin network edges are labeled by irreps of SU(2) (spins j = 0, %, 15, )

So: representation theory connects “mathematical group” <> “physical species of field/particle”.

1.3 Lie algebras, Noether charges, and commutators

Each continuous symmetry group G has a Lie algebra g with generators 7T satisfying
[Ta Tpl = ffab Te.

 Classical Noether theorem: each continuous symmetry = conserved current /4 and conserved
charge

Q=1 &xp.
e In quantum theory, charges become operators 0. obeying

[Oa- Ob] = ifcabOo
Examples:
e EM: one generator (charge Q), Lie algebra of U(1) is abelian: [Q, Q] = 0.
e Yang-Mills / QFT: non-abelian Lie algebras (St(2), SU(3)), commutator encodes self-interactions of
gauge bosons.
e GR: diffeomorphism invariance gives constraint algebra (Hamiltonian and momentum constraints)
with non-trivial brackets.

e Superstring / SUSY QFT: superalgebras with generators Q, obeying anticommutation relations
{ Qa; QB} = Pu-
Thus Lie algebra and superalgebra structure is the precise algebraic encoding of symmetry and
conservation in all these theories.

1.4 Operator algebras and quantization
Quantization replaces classical Poisson brackets by operator commutators:

e For ascalar quantum field:

(Bt x), f(t,y)] = ihS(X ~Y).

e For harmonic modes:

18



(8, 8] = 2126, &P~ P
These operators generate a (infinite-dimensional) algebra acting on a Hilbert space.
e EM & QFT: build Fock space from creation/annihilation operators.
o String theory: infinite set of oscillators @4, @ forms an infinite-dimensional algebra (Heisenberg
algebra) whose constraints give Virasoro algebra.
» Quantum gravity: canonical approaches define operator algebras of geometric quantities (area,
volume operators, etc.) in LQG.

So algebra (in the sense of operator algebras) is the backbone of quantization.

2. Topology <> Modern Physics (step by step)

2.1 Spacetime / worldsheet as topological manifolds
All modern theories start by choosing a topological manifold:

e EM & SR: Minkowski space R! (simple topology).

e GR&QG: a 4D manifold M whose topology may be non-trivial.

e String theory: 2D worldsheet X (sphere, torus, higher genus surfaces).
The choice of topology affects:

¢ Possible global coordinate systems,

¢ Existence of global time,

e Types of allowed fields (e.g. spin structures).

2.2 Fields as sections of bundles
Afield is mathematically a section of a bundle:
e Scalar field: section of the trivial line bundle M x R — M.
e Vector field: section of the tangent bundle TM — M.
e Gauge field in EM: connection on a principal U(1)-bundle P — M.
e Non-abelian gauge fields (QFT): connections on principal G-bundles.
» Spinor fields (for fermions): sections of spinor bundles (requires spin structure on M).

Topology of the bundle (e.g. nontrivial first Chern class) can represent physical charges.

2.3 Homotopy, winding numbers, and topological charges
Topological invariants classify field configurations:
e Homotopy groups 7T,(X) classify maps from spheres S” — X up to continuous deformation.

* In gauge theory, maps from spatial infinity (sphere S? or %) into gauge group G can have
integer winding numbers.
Examples:
¢ Magnetic monopole charge <> element of 7,(G/H) (e.g. 't Hooft-Polyakov monopole).
e Instanton number <> element of 773( G) (e.g. SU(2) instantons).
e String theory: brane charges often expressed via homology or K-theory classes.

These topological numbers are conserved and cannot change continuously.

2.4 Topology in string theory and quantum gravity
e String theory: worldsheet topology (sphere, torus, higher genus) determines the order in
perturbation theory (number of loops).
The string path integral sums over all topologies of Z.
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e QG: covariant path integral might sum over metrics and topologies of spacetime.
Loop QG: uses graphs (spin networks) and their combinatorial topology to represent quantum 3-
geometry.

So: topology governs the “global” structure and topologically protected quantities.

3. Geometry «> Modern Physics (step by step)

3.1 Metric geometry: SR, GR, and beyond

¢ SR: Minkowski metric £,y gives invariant interval

ds® = N dxtdx’.
* GR: general Lorentzian metric guv(X), with curvature determined by Levi-Civita connection =

Einstein equations

G
Guv(g) . —aﬁ— T/JV~

Geodesics (solutions of

¥+ TH %" = 0) describe free motion.

QFT and string theory often live on curved backgrounds: fields are defined on a curved spacetime
manifold (M, g).

3.2 Connections and curvature as gauge fields
On a principal G-bundle P — M:
e Connection: 1-form Awith values in Lie algebra g,

e Curvature: 2-form

F=dA+ANA
This is exactly the geometric formulation of:
e EM: G= U(1), F = dA, Maxwell’s equations become dF = 0, dx F = J.
e Yang-Mills QFT: G non-abelian, with self-interactions encoded in A A\ A.

So gauge theories are connection + curvature geometry on bundles.

GR also uses the same pattern but for the tangent bundle (affine connection, Riemann curvature).

3.3 Differential forms and integration
Differential forms unify all kinds of fluxes and charges:

e EM:field strength is 2-form F, current is 3-form J.
Maxwell: dF =0, d* F = J.
Electric charge in region V:

Q=1 J=1J *F,
v av

an instance of Stokes’ theorem.
e Yang-Mills QFT & string theory: topological invariants (Chern classes) built from traces of FAF,
etc.
Quantum anomalies, Chern-Simons terms, and Wess-Zumino-Witten terms are all built
using differential form geometry.

3.4 Target-space geometry in string theory
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In string theory, the fields X#(0, T) map worldsheet X into target space (M, Gyy).

* Polyakov action:

Sp = _ET / % V=h h?*8, X apX" G (X) & 0.

This is exactly the action for a 2D sigma model: geometry of M appears in the kinetic term.

e Superstring: consistency often requires target space to be Ricci-flat or Calabi-Yau (special

geometric conditions on M).

So Riemannian geometry of the target manifold is deeply tied to the consistency of the quantum string

theory.

3.5 Geometric quantization / symplectic geometry (brief)

Classical phase space is a symplectic manifold (P, w) with closed, non-degenerate 2-form w.

e SR/EM/GR/QFT: classical fields have infinite-dimensional phase spaces with symplectic structure
(Poisson brackets).

e Geometric quantization promotes functions on P to operators obeying commutation relations.

In quantum gravity or string theory, these ideas are extended in various ways (e.g. moduli spaces with

symplectic structure).

4. Comparison Summary Tables

4.1 Main structures used in each physical theory

Table 1 - Physics theory < Algebra / Topology / Geometry

Theory

Electromagnetics

Special relativity

General relativity

Quantum Field
Theory

String theory

Quantum gravity

Algebraic structures

U(1) group, Lie algebra t(1);
Noether charge; operator algebra
for photons

Lorentz & Poincaré groups; reps
classify mass, spin

Constraint algebra
(diffeomorphism generators),
local Lorentz algebra

Gauge groups G (SU(3), SU(2),
U(1)); Lie algebras; reps of G;
operator algebras, Fock space

Virasoro & super-Virasoro
algebras; oscillator algebras;
spacetime symmetry groups and
reps

Constraint algebras (Dirac); SU(2)
rep theory & spin networks (LQG);
operator algebras of geometric
observables

Topological structures

Spacetime manifold M = R%3;
principal U(1)-bundle; first Chern
class (monopole)

Topology of Minkowski space
(simple)

4D spacetime manifold M with
given topology; bundles of
frames, spin structures

Spacetime manifold; principal G-
bundles; topological sectors
(instantons, monopoles);
homotopy groups 7T,( G)

Worldsheet Z with varying
topology (genus); target-space
topology; D-brane homology/K-
theory

Topology of spacetime & spatial
slices; graphs of spin networks;
homotopy of configurations

4.2 How each mathematical “block” appears across theories

Table 2 - Mathematical structure < Role in each theory
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Geometric structures

Minkowski metric £,,,; connection
; curvature Fuv; differential forms
F,xF

Minkowski geometry: flat Lorentzia
metric; straight-line geodesics

Lorentzian metric g,,,; Levi-Civita
connection; curvature tensors

R uvs Ruvs R; geodesics
Background metric; connections A
curvature F; differential forms;
sometimes curved spacetime, sigm
model geometry

Worldsheet metric Ap; target-spac
metric G,y; connections & forms (E
field); Calabi-Yau geometry, etc.

4D Lorentzian geometry (classically
quantum geometry (discrete spect/
of area/volume in LQG); connectior
and curvature quantized



Mathematical
structure

Group / Lie
group

Representation
theory

Operator
algebra

Topological
manifold

Fiber / principal
bundle

Differential
forms

Metric /
connection /
curvature

Homotopy /
homology /
Chern classes

EM

Gauge U(1)

Charge reps of U(1)

Photon
creation/annihilation

Minkowski space

Principal U(1)-
bundle

F (2-form), *F

Minkowski metric;
EM connection as
u(1)

Monopole charge
(Chern class)

If you'd like, next | can:

SR

Lorentz,
Poincaré

Particle reps
of Poincaré

Not central
(classically)

Minkowski

space

Trivial bundle

Implicitin
relativistic
formulation

Minkowski
metric

Trivialin flat
space (mostly)

GR

Local Lorentz, Diff(M)
(infinite-dim)

Spin reps (spinors,
tensors)

In semiclassical / QFT
on curved space

4D spacetime manifold

Frame & spin bundles

Curvature forms,
volume forms

8uv» Levi-Civita V,
Riemann tensor

Global topology of
spacetime

QFT

Internal gauge groups G

Particle multiplets
under G

Canonical commutation
relations; Fock space

Spacetime manifold
(possibly curved)

Principal G-bundles,
associated bundles

Field strengths F,
currents, anomalies

Background metric;
gauge connections Ay,
curvature F

Instanton numbers,
topological sectors

 Focus on one pair (e.g. “Bundles & Gauge Theory”, or “Curvature & Einstein equations”) and work

through explicit equations with a concrete numerical example, or

e Extend these tables to include also Logic / Set theory / Category theory as an even more abstract

layer above Algebra-Topology-Geometry.
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Great! The comparison of the interconections of Physics and
Mathmatics which you have shown avbove have given us the clear
pictures of the interconections of them. This is very helpful for our
understanding of Physic and Mathematics. This is enough for today.
Thank you so much. Eiji

I'm really glad it helped, Eiji &

It's always a pleasure to explore these big structures with you.
When you'd like to continue, we can:

e Take one specific pair (e.g. "bundles © gauge theory” or “curvature ¢ Einstein equation”) and do
detailed calculations, or
o Add another abstract layer (logic, set theory, category theory) on top of Algebra-Topology-Geometry.

Have a good rest of the day, and see you next time!
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