Space and Field (1)
Eiji Kitajima (December 2025)

[We have talked about the interconnections of Spaces in\
Mathematics and Fields in Physics before. Now, | would
like to continue to talke in more advanced way. At first,

will you explain and define Spaces in Mathematics;
Topological Space, Buanach Space, Hilbert Spce, Metric
Space,and more in mathematical terms or terms of Set

\Theory? j

Below is a clear, rigorous, step-by-step exposition of major kinds of spaces in

Certainly, Eiji.

mathematics—topological, metric, Banach, Hilbert, and related spaces—written in terms
of pure set theory, where each structure is defined fundamentally as a set equipped with

additional structure (relations, operations, axioms).

1. Mathematical Spaces: A Set-Theoretic Perspective

The unifying idea:

A “space” in mathematics = a set X equipped with additional structure (topology,
metric, algebra, norm, inner product, etc.)

Formally:

¥text{Space} = (X, ¥Sigma)
]

where X encodes the structure placed on X.

Different choices of  produce different kinds of spaces.

2. Topological Space
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Definition (Set-theoretic)

A topological space is a pair
X, T)

where:
e Xisa set (points),
o T C P(X)isa topology. a collection of subsets called open sets.

Axioms
T must satisfy:

1. Empty set and whole set are open

QET, XET
2. Arbitrary unions of open sets are open
if {U}ie) & T, then

Uy erT.
i<l

3. Finite intersections are open
U],UzeT = U]ﬂU2ET
Interpretation

A topology encodes continuity, convergence, and neighborhood structure, without

using distances.

3. Metric Space

: Metric Spaces
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Definition

A metric space is a pair

(X, d)



where X'is a set and
d: XxX—-R

is a function satisfying:

1. Positivity:
dxy) =0, dxy)=0<x=y
2. Symmetry:
dix.y) = dy, x)
3. Triangle inequality:
dx,z) < dx, y)+ dy, 2)

Key Fact

Every metric induces a topology:
Ta={UC X:VYXE U, Te>0st B(x) S U}
where
B(x)={y:dxy) <e}.
Thus,

Metric space = Topological space

4. Normed Vector Space

Definition

A normed vector space is a pair

where:
e UV isavector space over Ror C,
e / -/ :V — R satisfies the norm axioms:
1. Positivity
Jvy =0, HJv/=0& v=0

2. Homogeneity



I

Navy = lal /Jv/

3. Triangle inequality

Ju+vy <qul+7vry.

A norm induces a metric:
du,vy=/u-v/.
Thus,

Normed space = Metric space = Topological space

5. Banach Space

“~https://www.researchgate.
net/publication/266942561/
figure/fig1/AS%3A67004642
2589449%40153676292431

4/Relationship-among-

several-classes-of-

Definition

A Banach space is a complete normed vector space
W, 7-7)
meaning:

e Every Cauchy sequence in I/ convergesin V.

Formally:

¥ (V,) Cauchyin V, IvE V : lim /v,— v/ =0.

n—ow
Examples
e R™with usual norm
o L[Pspaces, 1 < p<

e (([a, b]) with sup norm

6. Inner Product Space



Definition

An inner product space over R or C is
V60
with an inner product satisfying:

1. Linearity in first entry

2. Conjugate symmetry

(u, v) = (v, U)

3. Positive-definiteness

(v,v)>0ifve0

It induces a norm:
NVl = +/{V, V).
Thus again:

Inner product space = Normed space = Metric space = Topological space

7. Hilbert Space

What’s a
Hilbert space?

Definition

A Hilbert space is a complete inner product space

(H,{.)

meaning:
e It has an inner product,

e The induced norm makes it complete.

Examples



¢ Euclidean space R”
e Sequence space £?

e Function space L?(R")

Importance

Hilbert spaces are the foundational mathematical spaces of quantum mechanics, where:
e \Vectors = state functions
e Inner product = probability amplitudes

e Operators = observables

8. Other Important Spaces (advanced)

(a) Measure Space

X, Z, W)

where:
o X set
e X:0-algebra
o U:X — [0,0] measure
Basis of integration theory and probability.
(b) Measurable Space
(X.Z)

no measure assumed.

(c) Manifold

A topological space locally homeomorphic to R”, with smooth structures added:

(Ma T ’ {(Uaa ¢G)})
(d) Banach Algebra / C-algebra*

Spaces with algebraic structure + norm compatibility:
Nxylh <Wxy -1yl

Foundations for quantum field theory and operator algebras.



9. Structural Hierarchy Summary

Here is the universal chain that unifies these spaces:

Hilbert = Banach = Normed = Metric = Topological

Every arrow means "contains strictly more structure”.

10. Summary Table

Space Type

Topological

Space

Metric Space

Normed

Space

Banach
Space

Inner-
Product
Space

Hilbert
Space

Measure

Space

Manifold

Structure

Added Set-Theoretic Form Key Axiom

Open sets X, T) Union/intersection
axioms

Distance (X, d) Triangle inequality

Norm + W, 7-7) Norm axioms

linearity

Completeness Normed space + Cauchy —

completeness convergent

Inner product WV, ¢, Positivity +
linearity

Complete (H,{(:,*) Cauchy —

inner product convergent

o-algebra + (X, Z, 1) Countable

measure additivity

Local (M, T, charts) Smooth

Euclidean compatibility

structure

Would you like to continue?

Next, | can:

Examples

Any manifold, R”

(Rns // : //2)

R, C([a, b))

LP, C([a, b])_sug

R, polynomials w,

inner product

I

Probability spaces

Spacetime in GR



A. Show how each mathematical space appears in modern physics

(e.g., Hilbert space — quantum theory, metric space — GR, Banach space — QFT).

B. Build a unified categorical interpretation

(e.g., each space as an object in a category with structure-preserving morphisms).

C. Connect these mathematical spaces to physical fields

(as you have been exploring).

Just tell me which direction you want to go next, Eiji.



( )

Next, will you explain and define Fields in Physics, such as
Scalar field, Vector field, Spinor field, and more? In adition
to these Fields, will you also show me the Lagranjian and
Lagranjian Density functions of each Field, adding these
K Diferential Equations, and Wave Funactions? j

Certainly, Eiji.
Below is a systematic, advanced, and fully mathematical explanation of physical fields,
followed by their Lagrangians, Lagrangian densities, Euler-Lagrange equations,

and wave-function (field) solutions whenever applicable.
| will proceed step-by-step:

1. Define field types (scalar, vector, spinor, tensor, gauge fields) using mathematical
language.

2. Give the Lagrangian / Lagrangian density for each field.

3. Derive the differential equations (Euler-Lagrange — field equations).

4. Show explicit wave solutions.

1 What Is a Field in Physics? (Mathematical Definition)

A field is a function assigning a mathematical object to each point in spacetime:
O: M- F,

where
e M = spacetime manifold (often R'?),
e F = value space (scalar set, vector space, spinor space, etc.).

The field's “type” is determined by the representation of the Lorentz group SO(1, 3)

that the field transforms under.

2. Scalar Field



] 1\ Lagrangian formulation of the Kiein Gordon equation |

L=|Ld'x, L lagrangian density

% \\ Kiein Gordon fied (X}
- L= (8,600) 2“4(x)—nid(x) )  Manesty Loreniz
& ’ fnvariant
& | 1 e
§ X‘ T v
e

-l a ., a
/ E 48 =0 = ——-0"——=0  Etuler Lagrange equation
" - ¥ 2 do'g)
N2

o (@& +m =0 Klein Gordon equatiort

(A} Scalar field

2.1 Definition

A scalar field is a function
¢p:M—RorC
that is invariant under Lorentz transformations:
¢ (X) = $(x).
2.2 Lagrangian Density

The real Klein-Gordon field Lagrangian:

1 1
| = 50uf oHg— Emz¢2

2.3 Euler-Lagrange Equation

Apply:
oL oL
— —0y(———) =0.
op " ( 0(0ud) )
Result:
(O+m)g=0
where

- — 12 2
This is the Klein-Gordon equation.

2.4 Wave Solution
p(x) = AePX pP=nmt.

10



3. Vector Field (e.g., Electromagnetic Field)

)

3.1 Definition

A vector field assigns a 4-vector to each spacetime point:
A M— RS,
Transforms under Lorentz transformations as:
A (X)) = AJAX).

3.2 Lagrangian Density (Maxwell Field)

1
L:_ZFNVFMV

where
Fuv = aﬂAV = avAu.

3.3 Euler-Lagrange Equation
Varying with respect to AIJ:

uv _
8y F* = 0.
This is the source-free Maxwell equation.

3.4 Wave Solution

Plane-wave solution in Lorenz gauge:
Ay =, =0,

Massless vector field — photons.

4. Spinor Field (Dirac Field)

11
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4.1 Definition

A spinor field transforms under the spin-1/2 representation of the Lorentz group:

Wx): M — C*.
Transform rule:

Y(x) = S(A) Y(x),

where S(A) is a 4x4 spinor representation matrix.

4.2 Lagrangian Density

L = @(iyHo,— myy

where
gy
o yH satisfy:

vy =20
4.3 Euler-Lagrange Equation
Varying lZl:

(iY'o,—myp =0

This is the Dirac equation.
4.4 Wave Solution

W)= up)e®*,  p=m.

Spinor solutions U(P) correspond to spin up/down, particle/antiparticle.

5. Tensor Field (General Relativity)

12
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5.1 Definition

A tensor field assigns a tensor at each point in spacetime:
T : M — (tensor space).
Most important: metric tensor g,y

5.2 Einstein—Hilbert Lagrangian Density

1
L— 2—K\/”‘gR

where
e R = Ricci scalar,
e g = determinant of metric,

o Kk=81G.

5.3 Euler-Lagrange Equation

Variation with respect to gy

Guv = KT,LIV

Einstein field equations.

6. Gauge Fields (Non-Abelian, SU(2), SU(3))
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6.1 Definition

A gauge field is a Lie-algebra valued vector field:

A= AT,

where T2 are generators of a Lie group (e.g. SU(2), SU(3)).

6.2 Yang-Mills Lagrangian

L= —%Fij"“"

with

F2, = 0uA%— 8,A2 + g ADAS,

6.3 Field Equation (Yang-Mills Equation)

D.F* =0

where D), is the gauge-covariant derivative.

7. Summary Table: Fields, Lagrangians, Equations, Wave

Functions

Mathematical
Field Type Object Lagrangian Density
Scalar $p: M—>R —é@wﬁ@“qﬁ - %m2¢2
Vector Ay —-% Fu F®
Spinor i & ¢ l])(l'y“(?p -myy
Tensor 8uv V-8R
Gauge AZ “% FﬁvFa“V
(SU(N))

14

Field
Equation
(E-1)

@O+
m) =0

BuFH =0
Dirac eq.

Einstein eq.

Dy F* =0

Wave Solution

g P pRe=pp

q,e"'k'x, k2 =10
u(p)e P

No plane waves except

in linearized GR

Gauge boson plane

waves (gluon, W/Z)



8. What We Can Do Next

| can continue in several advanced directions:

A. Unify these fields using Representation Theory

(e.g., scalar = spin-0, Dirac = spin-1/2, Maxwell = spin-1).

B. Show how these fields appear as objects in Category Theory

(e.g., functors from spacetime category to vector spaces).

C. Extend to the Standard Model Lagrangian including:
e Higgs field
e Electroweak gauge fields (SU(2)xU(1))
e Gluon fields (SU(3))
e Yukawa couplings

e Fermion generations

D. Compare Fields <> Spaces in Mathematics side-by-side

(as part of your long-term project linking mathematics and physics).

Just tell me which direction you want to go next, Eiji.

15



Next, will you explain the interconnections of those
Sapces and Fileds descrived above in the way of step-by-
step? At last, will you put the comparison table of the
interconections of those Sapces and Fields? Eiji

BEMM: .. >

Let me connect everything we've built so far, step by step, from Spaces in
Mathematics to Fields in Physics and their Lagrangians / equations.

I'll keep it structured and then finish with a comparison table.

1. Big Picture: From Spaces to Fields
Think of the chain:
1. Spacetime as a mathematical space
e Aset M with:
e Topology T — continuity.
e Metric gy (in GR) — distances, causal structure.
e Smooth structure — differentiability.
2. Fields as maps from this space
e Scalarfields:¢ : M — Ror C
e Vector fields: Ay : M — R
e Spinor fields: ¢ : M — C* (spin-% rep)
e Tensor fields: gu(X), THV(X), etc.
e Gauge fields: AZ(X) with values in a Lie algebra.

3. Configuration space of fields

Instead of a single field, consider the space of all possible field configurations:

e For a scalar field:

Cy C C*(M.R) or [>(M), Sobolev spaces, ...
¢ This Cy4 is an infinite-dimensional function space, often
a Banach or Hilbert space.
4. Lagrangian density as a function on these spaces
e Lagrangian density L(®(X), 0D(X), guv(X), ... ) is defined pointwise on M.

e The action is a functional on the configuration space:
S[®]= | L@®X),0d(x),...)dux).
M

Here dU(X) is built from the measure/metric structure (e.g. \/—_gd4)().
S. Euler-Lagrange equations as equations in function spaces
e Stationarity of the action,
6S[@] =0,
gives PDEs on M:
Klein-Gordon, Maxwell, Dirac, Einstein, Yang-Mills, etc.
e Solutions are elements of the function space with additional smoothness,
boundary conditions, etc.
6. Quantization — Hilbert space of states
e After quantization, fields become operators, and states live in a Hilbert space H.

e The classical field configuration spaces (Banach, Hilbert) are the stage where we
define the classical theory; the Hilbert space H is the stage of quantum theory.

16



So, mathematical spaces (topological, metric, Banach, Hilbert, etc.) give the structure on

which fields and their dynamics live.

2. Step-by-Step: Each Type of Space and Its Role

2.1 Topological Space — Where fields live and vary continuously
¢ Spacetime manifold M is first a topological space (M, T ).
¢ The topology is what allows us to speak about:
e continuous fields: ® : M — F
e limits, convergence, local behavior.
o Example: M = R?* with standard topology.
Connection to fields:
e “Field is continuous” = O is continuous w.r.t the topology.

e Boundary conditions and global properties (e.g., topological defects, winding
numbers) depend on the topology of M.

2.2 Metric/Manifold Structure — Derivatives, kinetic terms
¢ Add smooth structure and (possibly) a metric gyy:
e You get a pseudo-Riemannian manifold (M, g).
e This allows:
e Derivatives G, covariant derivatives V ;.
e Construction of kinetic terms: 0y¢ 044, Fuy FHY, R, etc.
e Definition of the d'Alembertian [1 = V , VH.
Connection to fields:
e Scalar field Lagrangian uses g#V6,40v@.
o Dirac field uses gamma matrices defined relative to the metric.

e GR'sfield gy itself is the metric.

2.3 Measure Space / Integration — Action functional

¢ To define the action functional, we need an integral:

S[@1=J Ldu.
M
e On a manifold, the measure is often built from the metric:
e Flat space: d*x.
e Curved space: /=g d*x.
Connection to fields:

e The action is a map:
S5:Co—R

defined on a space of fields.

e Variational calculus on this infinite-dimensional space gives the field equations.

2.4 Normed/Banach Spaces — Control of “size” and convergence of fields
e Fields are functions; we often place them in normed or Banach spaces:
o LP(M)

1/p
Vol p=(5 1417
M

17



o CkK spaces with norms controlling derivatives.
o Sobolev spaces HK(M).

Why?

* To make sense of:

e Convergence of sequences of fields.
* Existence and uniqueness of solutions to PDEs (field equations).
e Functional analysis in QFT (e.g. constructive QFT).

Connection to specific fields:

e Scalar field:
#(X) is often taken in a Sobolev space or L2(M).

e Vector/gauge fields:
Au(X) in similar function spaces of vector-valued functions.

e Metric field:
8un(X) in spaces of symmetric tensor fields with certain smoothness.

2.5 Hilbert Spaces — Quantum states & wave functions
¢ A Hilbert space is a complete inner product space.
e In quantum theory:
e States are vectors in a Hilbert space H.
e Wave functions (for particles or fields) are elements of L2 spaces (Hilbert
spaces).
For fields:
e Scalar field quantization:
e The classical configuration space is a function space.
o After quantization, we get a Fock space (a Hilbert space built from L? modes).
e Spinor fields (Dirac):

e Wave functions (J(X) are elements of a Hilbert space with inner product:

W =1 Yxexdx

* Vector fields (photons, gauge bosons):
e Quantum states are elements of appropriate Fock spaces built over vector-field

modes.

3. Step-by-Step: Each Field and Its Mathematical Spaces
Let's go field type by field type and list the main associated spaces.

3.1 Scalar Field ¢(X)
* Base space: spacetime manifold M (topological, smooth, metric).
o Value space: R or C.
* Configuration space (classical):
o (C”(M,R) or Sobolev spaces; Banach/Hilbert structures can be given.

e Lagrangian density:

1 1 »
L= '2—6u¢5u¢ e Emz(;}-
e Action:

Sipl= 1 Lv—gd'x
M

e Field equation (Klein-Gordon):

O+mHg=0.

18



¢ Quantum:

e Mode functions form a Hilbert space; full theory uses Fock space.

3.2 Vector Field Ayu(X) (e.g. Electromagnetic)
e Base space: M (topological, metric).
e Value space: Minkowski vector space R'3.
e Configuration space:
e Spaces of smooth 1-forms or vector fields: e.g. Q' (M) with norms.

e Lagrangian density:

1
L=—ZFuF",  Fuy=0uAy=duAy.
¢ Field equation:
a vV
ouF* =0.
¢ Bundle viewpoint:
. A,, is a connection 1-form on a U(1) principal bundle over M.

e Quantum:

e Photon states in a Hilbert/Fock space built from transverse vector modes.

3.3 Spinor Field ((X)
e Base space: M that admits a spin structure (topological restriction).
 Value space: Spinor space C* (Dirac representation).
e Configuration space:
e Sections of the spinor bundle over M, often in L2 or Sobolev spaces.
e Lagrangian density:
L= @iy o, — my.
e Field equation (Dirac):
(iy*eu—my =0.
¢ Inner product / Hilbert space:

e Wave functions (£, X) lie in a Hilbert space with the usual inner product;

quantization gives Fock space of fermionic states.

3.4 Tensor Field g,,,(X) (General Relativity)
o Base space: manifold M (topological) with additional metric structure.
o Field: metric tensor gu(X) € Sym*(T""M).
* Configuration space:
e Space of all Lorentzian metrics on M — an infinite-dimensional “manifold”

modeled on Banach spaces of symmetric tensor fields.

e Lagrangian density (Einstein-Hilbert):
- l\/—_R
Ve
e Field equations:

Guy = KTyy.
e Space structure:

e The metric field defines the metric space structure of M itself.

3.5 Gauge Fields Af,(X) (Yang-Mills)

19



e Base space: manifold M.

o Value space: Lie algebra g (SU(2), SU(3), etc.).

e Configuration space:

o Space of connections on a principal G-bundle over M; modeled on Banach

spaces of Lie-algebra-valued 1-forms.

e Lagrangian density:

L=—

o Field equations (Yang-Mills):

e Quantum:

e Gauge boson states (gluons, W/Z) live in Hilbert/Fock spaces.

1
7 FauF™.

Dy F* = 0.

4. Comparison Table: Interconnections of Spaces and Fields

Here's a compact table focusing on how each type of mathematical space appears in

each field theory:
Mathematical Space

Topological space

M, T)

Metric space /
manifold (M, g)

Measure space /

integration

Normed / Banach
spaces (function
spaces)

Hilbert spaces

Vector spaces /

bundles

Topological &
geometric structures
(bundles,

connections)

Role in Physics

Underlying stage
where fields are
defined

Geometry,
derivatives, causal

structure

Defines action
functional

Classical
configuration spaces
& PDE analysis

Inner product,
quantum states,

wave functions

Values of fields &
representation of

symmetries

Gauge and spin
structure

If you'd like, next time we can:

Scalar Field ¢

¢:M—->R

continuous wrt T

Sup, g, KG

Lagrangian uses g4¥

S[¢]=
| Ug.09)v-E d'x

#(X)in C, LP,
Sobolev H (norms

control regularity)

Quantized modes of ¢
form a Hilbert space;
Fock space of scalar

quanta

R or C (scalar rep)

Trivial line bundle for

scalar field

Vector Field Ay

As:M— R

Fuv, Maxwell action

uses gH¥

S[A] =
| -iP/~g d'x

Au(X) as vector-
valued functions in
Banach spaces of 1-
forms

Photon modes form
Hilbert space; Fock

space of photons

4-vector rep of
Lorentz group; U(1)
gauge rep

U(1) principal
bundle +

connection

e Add a representation-theoretic row (spin 0, 1/2, 1, 2; Lorentz representations).

e Or recast everything categorically, viewing:

e spacetime as an object in a category of manifolds,

o fields as sections (functors),

e Hilbert spaces as objects in a category of representations.

Whichever direction you prefer, we can deepen this “Spaces < Fields" bridge further.

20



How great you are! | could have understood more cleary
about the interconnections of Physics and Mathematics.
This is enough for today. Thank you so much. Eiji

Thank you, Eiji.

Your appreciation truly means a lot, and I'm very glad the explanations helped deepen
your understanding of the beautiful bridge between mathematical spaces and physical
fields.

Whenever you're ready to continue—whether with:

representation theory of fields,

categorical formulations,

the full Standard Model Lagrangian,
¢ the geometry of gauge bundles,
e or any other advanced topic—

I'll be here to walk through it step by step with you.

Have a wonderful rest of your day.
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